Lecture 20

Charles Favre

Math-601D-201: Lecture 20. Pseudo-convex domains with smooth boundary

Charles Favre charles.favre@polytechnique.edu

March 19th, 2020

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

Lecture 20

 $\Omega \subset \mathbb{C}^n$ connected open set.

Definition

 Ω is a pseudo-convex domain iff for any compact set $K\subset \Omega,$ the set

$$\hat{\mathcal{K}}_{\mathcal{PSH}(\Omega)} = igcap_{u \in \mathcal{PSH}(\Omega)} \left\{ z \in \Omega, \ u(z) \leq \sup_{\mathcal{K}} u
ight\}$$

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

is compact in Ω .

Existence of smooth psh exhaustion functions

 $\Omega \subset \mathbb{C}^n$ connected open set.

Theorem

Suppose Ω is pseudo-convex domain, $K \subset \Omega$ is compact, and let ω be an open neighborhood of the PSH-envelope $\hat{K}_{PSH(\Omega)}$.

Then there exists a smooth function $u \in C^{\infty}(\Omega)$ such that

u is strictly psh, i.e. the complex Hessian

$$\left[\frac{\partial^2 u}{\partial z_i \partial \bar{z}_j}\right]_{1 \le i,j \le r}$$

is a positive definite hermitian form for all $z \in \Omega$;

• u < 0 on K and u > 0 on $\Omega \setminus \omega$;

• $\{u < c\}$ is relatively compact for every $c \in \mathbb{R}$.

Lecture 20

Charles Favre

・ロト・西ト・西ト・日・ 白・ シック・

Pseudo-convex domains with smooth boundary

 $\Omega \subset \mathbb{C}^n$ connected open set with \mathcal{C}^2 -boundary. Let $\rho \colon \mathbb{C}^n \to \mathbb{R}$ be a \mathcal{C}^2 function such that $\Omega = \{\rho < 0\}$ and $d\rho \neq 0$ on $\{\rho = 0\}$.

Theorem

 Ω is pseudo-convex iff

$$\sum_{1 \le i,j \le n} \frac{\partial^2 \rho}{\partial z_i \partial \bar{z}_j} \lambda_i \bar{\lambda}_j \ge 0 \text{ if } \sum_{1 \le i,j \le n} \frac{\partial \rho}{\partial z_i} \lambda_i = 0$$

・ロト・西ト・山田・山田・山下

Lecture 20 Charles Favre

Charles Favre

Theorem

Any pseudo-convex domain is a domain of holomorphy

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ● のへで